題號:2011

科目:微積分1

題號:2011

共 | 頁之第 | 頁

※ 注意:請於試卷上「非選擇題作答區」標明題號並依序作答。

※ 禁止使用計算機

考試須知:

- ▶ 不能使用計算機,電子辭典及個人自備之計算紙。
- ▶ 無論計算或證明題,皆應詳述過程、理由;如未寫出詳細過程,一律不給分。
- ▶ 將答案寫於試卷,並標示正確的題號。
- 1. Evaluate the following limits or show that they do not exist.

(a) (8 pts)
$$\lim_{h\to 0} \frac{f(1+h) + f(1-h) - 2f(1)}{2h^2}$$
 where $f(x) = \ln\left(\tan^{-1}\left(\frac{1+x}{2}\right)\right)$.

(b) (8 pts)
$$\lim_{x\to 0} \frac{1-\sqrt{1+x}}{\sqrt{1-\cos 2x}}$$

(c) (8 pts)
$$\lim_{x\to\infty} (f(3x) - f(x)) \sin(\frac{1}{x})$$
 where $f(x)$ is a differentiable function and $\lim_{x\to\infty} f'(x) = 2$.

2. Let
$$f(x) = \begin{cases} (\cos 2x)^{\frac{1}{x}} & \text{, for } x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \setminus \{0\} \\ a & \text{, for } x = 0 \end{cases}$$
, where a is a constant.

- (a) (8 pts) Find the constant a such that f(x) is continuous at x = 0.
- (b) (12 pts) Suppose that f(x) is continuous at x = 0. Show that f(x) is differentiable at x = 0 and find f'(0).
- 3. Consider the function $f(x) = \tan^{-1}(e^x) + e^x$.
 - (a) (8 pts) Show that f is a one-to-one function.
 - (b) (10 pts) Let $g(x) = f^{-1}(x)$, the inverse function of f(x). Write down the linear approximation of g(x) at $x = 1 + \frac{\pi}{4}$.
 - (c) (2 pts) Use the linear approximation from part (b) to estimate the value of $g\left(1+\frac{\pi}{5}\right)$.
- 4. Consider the function $f(x) = x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}$.
 - (a) (10 pts) Find f'(x) and f''(x).
 - (b) (10 pts) Find all the asymptotes of y = f(x). (Hint: You may use the identity $A + B = \frac{A^3 + B^3}{A^2 - AB + B^2}$.)
 - (c) (10 pts) Sketch the graph of y = f(x). Indicate clearly in your sketch, if any, where it is increasing/decreasing, where it concaves upward/downward, all relative maxima/minima, inflection points and asymptotes.
 - (d) (6 pts) A particle is moving along the curve y = f(x). If the rate of change of its x-coordinate is 1 unit/s. Find the rate of change of its distance from the origin at the point $(2, 2^{\frac{4}{3}})$.