普通生物學甲課程大綱暨教科書參考清單

Chapter 1. Introduction: Themes in the Study of Life

I. The Chemistry of Life

Chapter 2. The chemical context of life

- ➤ How elements form the molecules?
 - Protons, neurons, and electrons atoms compounds
 - Living organisms have 25 common elements plus trace elements
- \succ The bonding between atoms
 - Electron arrangement
 - Chemical bonding: ionic, covalent, and hydrogen
- > The chemical reactions: rearrangement of chemical bonding

Chapter 3. Water and Life

- > The importance of water in supporting life
 - The hydrogen bonds: evaporation; boiling temperature
 - The density of water and ice
 - Water is a good solvent
- ≻ The pH and the environment
 - pH is important for life
 - Acidification threatens the environment

Chapter 4. Carbon and the Molecular Diversity of Life

- Organic compounds: carbon based molecules
- ➢ Bonding around carbon
 - carbon skeleton
 - Functional groups

Chapter 5. The Structure and Function of Large Biological Molecules

- > Macromolecules: linkage of simple monomers
- Polysaccharides: fuel and structure
 - Disaccharides
 - Polysaccharides: starch, glycogen, cellulose, and chitin
- Lipids: membrane and energy storage
 - Hydrophobic tail and hydrophilic head

- Saturated and unsaturated
- Proteins: various functions
 - Peptide bond and side chain
 - Protein structure: primary to quaternary
- ➢ Nucleic acids: the genetic material
 - Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
 - DNA double helix

II. The Cell

Chapter 6. A Tour of the Cell

- ➤ The Fundamental units of Life- Cell
 - Methods of studying cell:
 - Microscopy
 - Light microscope (LM)
 - Electron microscope (EM)
 - Scanning electron microscope (SEM)
 - Transmission electron microscope (TEM)
 - Cell Fractionation
 - Compartment of Eukaryotic cells
 - Comparison between prokaryotic and eukaryotic cells
 - Nucleus and ribosomes
 - Endomembrane system
 - ♦ Endoplasmic reticulum
 - ♦ Golgi apparatus
 - ♦ Lysosomes
 - ♦ Vacuoles
 - Mitochondria and chloroplasts
 - Cytoskeleton
 - ♦ Microtubule
 - ♦ Microfilament
 - ♦ Intermediate filament
 - Extramembrane component
 - ♦ Cell walls of plants
 - ♦ Extracellular matrix of animal cells
 - ♦ Cell junctions
 - Genetic instruction
 - Nucleus: information central

- Ribosomes: protein factories
- Endomembrane system and functions
 - Endoplasmic reticulum: biosynthetic factory
 - Functions of smooth ER
 - Functions of rough ER
 - Golgi apparatus: shipping and receiving center
 - Lysosomes: digestive compartments
 - Vacuoles: diverse maintenance compartments
- Energy metabolism of Cells
 - Evolutionary origins of mitochondria and chloroplasts
 - Mitochondria: chemical energy conversion
 - Chloroplasts: capture of light energy
 - Peroxisomes: oxidation
- Cytoskeleton: a network of fibers that organizes structures and activities in the cell
 - Roles of the cytoskeleton: support and motility
 - Components of the cytoskeleton
 - Microtubules
 - ♦ Centrosomes and centrioles
 - ♦ Flagella
 - Microfilaments (Actin filaments)
 - Intermediate filaments
- Extracellular components
 - Cell walls of plants
 - Extracellular matrix (ECM) of animal cells
 - Cell junctions
 - Plasmodesmata in plant cells
 - Tight junctions, desmosomes and gap junctions in animal cells

Chapter 7. Membrane Structure and Function

 \succ Life at the edge

- Cell membrane- fluid mosaics of lipids and proteins
 - Membrane models: Scientific inquiry
 - Phospholipid bilayer
 - Fluid mosaic model
 - The fluidity of membrane
 - Evolution of differences in membrane lipid composition
 - Membrane proteins and their functions

- Integral proteins
- Peripheral proteins
- The role of membrane carbohydrates in cell-cell recognition
- Synthesis and sidedness of membranes
- Membrane structure results in selective permeability
 - The permeability of the lipid bilayer
 - Transport proteins
- Passive transport: diffusion of a substance across a membrane with no energy investment
 - Effects of osmosis on water balance
 - Water balance of cells without walls
 - Water balance of cells with walls
 - Facilitated diffusion: passive transport aided by proteins
- Active transport: use energy to move solutes against their gradients
 - The need for energy in active transport
 - How ion pumps maintain membrane potential
 - Cotransport: coupled transport by a membrane protein
- Bulk transport: occur by exocytosis and endocytosis
 - Exocytosis
 - Endocytosis

Chapter 8. An Introduction to Metabolism

- An organism's metabolism transforms matter and energy, subject to the laws of thermodynamics
 - Organization of Metabolic Pathways
 - Energy Forms
 - The Laws of Energy Transformation
- ➤ The free-energy change of a reaction
 - Free-Energy Change, ΔG
 - Equilibrium Reaction
 - Metabolism and Free Energy
- > ATP powers cellular work
 - ATP Structure
 - How ATP Performs Work
 - ATP Regeneration
- Enzymes speed up metabolic reactions
 - The Activation Energy Barrier
 - How Enzymes Works

- Enzyme Specificity
- Enzyme's Active Site
- Factors Affect Enzyme Activity
- Regulation of enzyme activity
 - Allosteric Regulation
 - Compartmentalization of the Cell

Chapter 9. Cellular Respiration and Fermentation

- Oxidizing Organic Fuels Yields Energy
 - Catabolic Pathways and ATP Production
 - Redox Reactions
 - Cellular Respiration
- ➤ Glycolysis
- ➢ The Citric Acid Cycle
 - Oxidation of Pyruvate to Acetyl CoA
 - The Citric Acid Cycle
- > Oxidative phosphorylation, Chemiosmosis and Electron Transport
 - Electron Transport
 - Chemiosmosis
 - ATP Production
- Fermentation and anaerobic respiration
 - Fermentation
 - Fermentation, Anaerobic and Aerobic Respiration
- ➤ Controls of the Whole Metabolic Pathways
 - Feedback Regulation

Chapter 10. Photosynthesis

- > The process that feeds the biosphere
 - Photosynthesis: convert light energy to the chemical energy of food
 - Chloroplasts: the sites of photosynthesis in plants
 - Tracking atoms through photosynthesis
 - The splitting of water
 - Photosynthesis as a redox process
 - Two stages of photosynthesis: light reaction and Calvin cycle
 - The light reactions: convert solar energy to the chemical energy of ATP and NADPH
 - The nature of sunlight
 - Photosynthetic pigments: the light receptors

- Excitation of chlorophyll by light
- A photosystem: a reaction-center complex associated with light-harvesting complexes
 - photosystem II (PSII)
 - photosystem I (PSI)
- Linear electron flow
- Cyclic electron flow
- A comparison of chemiosmosis in chloroplasts and mitochondria
- The Calvin cycle: use the chemical energy of ATP and NADPH to reduce CO₂ to sugar
 - Phase 1: carbon fixation
 - Phase 2: reduction
 - Phase 3: regeneration of the CO₂ acceptor (RuBP)
- Alternative mechanisms of carbon fixation
 - Photorespiration: an evolutionary relic?
 - C4 plants: involve bundle-sheath cells and mesophyll cells
 - CAM plants: is similar to the C4 pathway
 - The importance of photosynthesis

Chapter 11. Cell Communication

- External Signals and Cellular Responses
 - Local and Long-Distance Signaling
 - Stages of Cell Signaling
- ➢ Reception
 - Cell Surface Receptors
 - Intracellular Receptors
- \succ Transduction
 - Signal Transduction Pathways
 - Protein Phosphorylation and Dephosphorylation
 - Second Messengers
- ≻ Response
 - Nuclear and Cytoplasmic Responses
 - Controls of the Responses
- Integrates Multiple Cell-Signaling Pathways
 - Apoptotic Pathways and the Signals

Chapter 12. The Cell Cycle

> Generation of genetically identical daughter cells

- Genetic Material Organization
- Chromosomes Distribution
- ≻ The mitotic phases
 - Cell Cycle Phases
 - The Mitotic Spindle
 - Cytokinesis
- ➤ Regulation of Cell Cycle
 - Cytoplasmic Signals
 - Control of Cell Cycle
 - Loss of Cell Cycle Controls and Cancer

III. Genetics

Chapter 13. Meiosis and Sexual Life Cycles

- Sexual Life Cycle Inheritance
- Meiosis and Sexual Reproduction
- Origins of Genetic Variation

Chapter 14. Mendel and the Gene Idea

- ➢ Mendel's Principles
- Mendelian Inheritance
- Mendelian Inheritance in Humans
- ➢ Non-Mendelian Inheritance

Chapter 15. The Chromosomal Basis of Inheritance

- ➤ Chromosome Theory
- Inheritance of X-Linked Genes
- Genetic Recombination and Linkage
- ➢ Genetic Disorders

Chapter 16. The Molecular Basis of Inheritance

- ➢ DNA is the genetic material
- DNA replication and repair
- ➤ Mutations
- ➤ Chromosomes

Chapter 17. From Gene to Protein

➤ Transcription

- ➤ Translation
- > Gene Expression in Bacteria, Archaea, and Eukarya

Chapter 18. Regulation of Gene Expression

- Prokaryotic Gene Regulation
- Eukaryotic Gene Regulation
- ≻ Non-coding RNA
- ➤ Cell Differentiation
- ➤ Cancer

Chapter 19. Viruses

- > The Discovery of Viruses: Scientific Inquiry
- ➢ Structure of Viruses
- Replicative Cycles of Viruses
- Evolution of Viruses
- Viral Diseases in Animals and in Plants
- Viroids and Prions

Chapter 20. Biotechnology

- ➢ DNA cloning
- DNA technology
- Cloning Organisms
- Applications of DNA Technology

Chapter 21. Genomes and Their Evolution

- ➤ Genomics
- Genome Diversity
- ➢ Comparative Genomics

IV. Mechanisms of Evolution

Chapter 22. Descent with modification

- Ideas about changes over time
 - Early studies on paleontology
 - Cuvier and Lamarck
 - Darwin and Wallace's concept on natural selection
 - Observations and implication
 - \diamond Variation in population

- ♦ Inheritance
- ♦ Population growth and environment
- \diamond Resource limitation
- \diamond Survival of the fittest
- Evidences of evolution
 - Evolution in action
 - Peppered moths and industrial melanism
 - Medium ground finch
 - Selection in guppies
 - Fossil records and 'missing links'
 - Whales and mammals
 - Birds and dinosaurs
 - Homology and homoplasy
 - Anatomical homology
 - Molecular homology
 - Convergence and divergent evolution
 - Biogeography

Chapter 23. Evolution of populations

- ➤ The modern synthesis
 - Microevolution
 - Gene pool
 - Allele frequency in population
 - Variation in gene pool
 - Discrete and quantitative characters
 - Nonheritable traits
 - Geographic variation
 - Cline and ecotypes
 - Hardy-Weinberg theorem
 - Assumptions
 - Sources of variation
 - \diamond Mutation
 - ♦ Sexual recombination
 - Factors influence allele frequencies
 - Mutations
 - Gene flow
 - Nonrandom mating
 - Genetic drift

- ♦ Bottleneck effect
- ♦ Founder effect
- Selection
 - \diamond Nature selection
 - \diamond Sexual selection
- Preservation of genetic variation
- Diploidy
- Balancing selection
- Neutral variation
- Molecular evolution
 - Neutral theory
- Macroevolution
 - Above species

Chapter 24. The origin of species

- Concepts of species
 - Biological species concept
 - Ernst Mayr and Theodosius Dobzhansky
 - What is a species?
 - Reproductive isolation and hybrids
 - Isolation mechanisms
 - Prezygotic barriers
 - ♦ Habitat isolation
 - \diamond Temporal isolation
 - ♦ Behavioral isolation
 - \diamond Mechanical isolation
 - ♦ Gametic mortality
 - Postzygotic barriers
 - ♦ Reduced hybrid viability
 - ♦ Reduced hybrid fertility
 - ♦ Hybrid breakdown
 - Limitation of the biological species concept
 - Other species definition
 - Morphological species concept
 - Phenotypic similarity
 - Ecological species concept
 - Phylogenetic species concept
- Speciation

- Geography of speciation
 - Allopatric speciation
 - Interruption of gene flow by geographic barrier
 - Examples of variation in isolated populations
 - Sympatric speciation
 - Autopolyploidy and allopolyploidy in plants
 - Habitat differentiation
 - Sexual selection
- ➢ Hybridization
 - Patterns in hybrid zone
 - Space patterns
 - Temporal patterns
 - Reinforcement
 - Barriers and fusions
 - Stability
 - Rapid evolution and adaptive radiation
- ➤ Speciation rates
 - Time course of speciation
 - Fossil records
 - Punctuated equilibrium
 - Macroevolution
 - Evolutionary novelties
 - Developmental modification and the molecular basis

Chapter 25. The history of life on earth

- ➤ Conditions on early earth
 - Oparin-Haldane model
 - Miller and Urey experiment
 - Studies by Altman and Cech
 - Fossil record chronicles of life on earth
 - Photosynthesis and the oxygen evolution
 - Fossil dating
 - Earth's history in a view of a clock
- Prokaryotes and eukaryotes
 - Endosymbiosis
 - The evolution of eukaryotes
 - Cases of serial endosymbiosis
- Multicellular eukaryotes

- Snowball earth hypothesis
- Cambrian explosion
 - Edicaran biota
 - Microfossil evidence
- Colonization of land
 - Fungi, plants, and animals
- ➤ Large scale patterns
 - Continental drift
 - Break-up of Pangaea
 - Movement of continents
 - Mass extinctions
 - The 'big five' events
 - Consequences of mass extinctions
- > Evolutionary effects of development genes
 - Changes in rate and timing
 - Heterochrony
 - Paedomorphosis
 - Changes in spatial pattern
 - Ectopic expression of homeotic genes
 - Changes in genes
 - Gene number
 - Gene regulation
- > Evolutionary novelties
 - Evolution of complex structure
 - Eyes
 - Evolutionary trends
 - patterns, rather than intrinsic drive

V. The Evolutionary History of Biological Diversity

Chapter 26. Phylogeny and the tree of life

- ➤ Terminology
 - Morphological and molecular homologies
 - Taxonomy, phylogeny, systematics
- Nomenclature and hierarchical classification
 - Linnaeus system
 - Binomial nomenclature
 - Naming problems

- Concept of phylogenetic systematics
 - Cladogram and clades
 - Homology and analogy
 - Convergent evolution
 - Molecular evolution
 - Cladistics
 - Shared primitive and derived characters
 - Monophyletic group
 - Nonmonophyletic group
 - Paraphyletic group
 - Polyphyletic group
 - Outgroup and ingroup
- > Methodology of phylogenetic analysis
 - General methods
 - Distance methods
 - Most parsimony principle
 - Maximum likelihood method
 - Morphological and molecular characters
 - gene tree and species tree
- ➢ Molecular evolution
 - Genome evolution
 - Size and complexity of genomes
 - Gene duplications and gene families
 - Molecular clock
 - Assumptions
 - Neutral theory
 - Difficulties

Chapter 27. Bacteria and Archaea

- ➤ General features
 - Structures
 - Shapes of prokaryotic cells
 - Differentiations
 - Cell-surface structures
 - Functional adaptations
 - Motility
 - Reproduction and adaptation
 - Genetic diversity in prokaryotes

- Rapid reproduction
- Mutation rates
- Genetic recombination
 - Conjugation
 - Plasmids
- Metabolic adaptation
 - Models of nutrition uptake
 - Photoautotrophy
 - Chemoautrophy
 - Photoheterotrophy
 - Chemoheterotrophy
 - Metabolic adaptation to oxygen
 - Nitrogen metabolism
- Classification and evolution
 - Three domain system
 - Bacteria
 - Archaea
 - Eukarya
 - Measuring diversity in nature
 - Culture
 - Direct PCR
 - Mycoplasma
- Roles of prokaryotes in nature
 - General roles
 - Chemical recycling
 - Cyanobacteria and symbiosis
 - Nutritional symbiosis of Buchnera and aphids
 - Pathogenic prokaryotes
 - Utility in biotechnology
 - Molecular cloning
 - Bioremediation

Chapter 28. Protists

- The classification of protists
 - Current understanding according to endosymbiosis theory
- The diversity and features of protists
 - Excavata
 - Diplomonads and parabasalids

- Euglenozoans
 - Euglena
 - Kinetoplastids
 - Trypanosoma
- Chromalveolata
 - Alveolates
 - Dinoflagellates
 - ♦ General features
 - ♦ Ecology toxin
 - ♦ Ecology symbiosis
 - ♦ Bioluminescence
 - Apicomlexa
 - ♦ Life cycle of Plasmodium
 - Ciliates
 - ♦ Structure of Paramecium
 - ♦ Conjugation and reproduction
- Stramenopiles
 - Heterokonts
 - ♦ Oomycetes
 - ♦ Chrysophytes
 - ♦ Diatoms
 - Brown algae
 - \diamond Life cycle
- Great Irish famine
- Rhizarians
 - General features
 - Cercozoans and radiolarians
 - Foraminiferans
- Archaeplastida
 - Red algae (Rhodophyta)
 - General features
 - Life cycle
 - Green algae
 - General features
 - Life cycle
 - Class Charophyceae
 - Mollusc/algal chloroplast endosymbiosis
- Unikonta

- Amoebozoans
 - General features
 - Slime molds
 - ♦ Plasmodial slime molds
 - \diamond Cellular slime molds
 - Life cycle
- Opsthokonts
 - Animals, fungi, choanoflagellates

Chapter 29. Plant Diversity I: How Plants Colonized Land

- > The evolution and terrestrial adaptations of plants
 - The closed living relative of land plants is green algae, Charophytes
 - Morphologically derived traits of land plants
- nonvascular (early evolving) land plants such as Bryophytes have life cycles dominated by gametophytes
 - Bryophytes include liverworts, mosses and hornworts
 - The diversity of gametophyte and sporophyte in Bryophyte
 - The ecological roles of Mosses
- Seedless vascular plants such as Ferns are dominated by sporophytes and are capable to grow tall by vascular tissues.
 - Key innovative traits of seedless vascular plants: vascular transport, roots, leaves and sporophylls
 - The life cycle of a fern
 - Classification of seedless vascular plants: Lycophyta and Pterophyta
 - The evolutionary and ecological significance of seedless vascular plants

Chapter 30. Plant Diversity II: The evolution of seed plants

> Key adaptive traits for terrestrial seed plants: Seeds and pollen grains

- Seed plants has reduced gametophytes
- Seed plants evolved heterospory, ovules, pollens and seeds
- The evolutionary of the key traits
- > The diversity of naked seed plants gymnosperm
 - The diversity and life cycle of gymnosperms
 - The significance of gymnosperms
- > The diversity and reproductive adaptation of angiosperm flowers and fruits
 - The diversity of flowers and fruits
 - The characteristics and life cycle of the angiosperm
 - The phylogeny and the evolution of angiosperm diversity

- The ecological and developmental significance of flower and fruits, and their interaction with animals.
- > Plant diversity in Taiwan and as natural resources for human welfare
 - The flora of Taiwan and their diversity
 - Plant derived natural products crops, woods, medicine, and ornament
 - Anthropogenic threats to plant diversity conservation of topical plants

Chapter 31. Fungi

Body structure of fungi

- General structure
 - Hyphae and mycelium
 - Septa
 - Cell wall
- Life cycle
- Asexual reproduction
- ➤ The diversity of fungi
 - Chytrids
 - General features
 - Evolutionary view
 - Ecology
 - Pathogens
 - Zygomycota
 - General features
 - Life cycle
 - Phototropism
 - Microsporidia
 - Glomeromycetes
 - General features
 - Ascomycetes
 - General features
 - Types of ascocarp
 - Life cycle
 - Basidiomycetes
 - General features
 - Life cycle
 - Specialized morphologies
 - Dolipore
 - Clamp connection

- Ecology of fungi
 - Interactions between fungi and other organisms
 - Fungi as decomposers
 - Symbiosis
 - Mycorrhizae and plants
 - ♦ Endomycorrhiza
 - ♦ Ectomycorrhiza
 - Fungi-animal symbiosis
 - ♦ Fungi in guts of ruminant animals
 - ♦ Tripartite symbiosis of ants, plants, and fungi
 - Lichens
 - ♦ Fungus-algae symbiosis
 - ♦ Ecological importances
 - Fungi as predators
 - Fungi as pathogens
 - Ergot of rye
 - Practical uses of fungi
 - Food
 - Medicine

Chapter 32-34. Animal Diversity

Animal Diversity

- Overview of Animal Diversity (Chapter 32)
 - Definition of animals
 - Modes of nutrition: heterotrophism
 - Tissue organization, cell structure and specialization
 - Reproduction and development
 - Animal body plans
 - Symmetry properties
 - \diamond Radial symmetry
 - ♦ Bilateral symmetry
 - Tissue layers
 - ♦ Ectoderm, mesoderm, endoderm
 - ♦ Diploblastic, triploblastic
 - Coelom
 - Protostome vs. deuterostome development
 - ♦ Cleavage pattern
 - \diamond Fates of blastophore

- \diamond Modes of coelom formation
- Phylogenetic relationships between animal phyla
- ♦ Morphology-based phylogeny vs. molecular phylogeny
- ♦ Agreements between the two schools
- ♦ New features of animal molecular phylogeny
- ♦ Geological record of animal life
- Our Evolutionary History (Chapter 33-34)
 - Human evolution (Chapter 34.8)
 - Our species *Homo sapiens*
 - Our cousins extinct *Homo* species
 - \diamond Neanderthals
 - \diamond Homo erectus
 - \diamond Early *Homo*
 - Human origin
 - ♦ Derived characters of humans
 - ♦ Fossil records
 - ♦ Genetic basis of human origin
 - Mammalian evolution (**Chapter 34.7**)
 - Primates: features
 - Definition of mammals
 - Monostremes, marsupials vs. eutherians
 - Early mammals in fossil record
 - Amniote evolution (Chapter 34.6)
 - Amniotes: features, definition and evolution
 - Early evolution of amniotes in fossil record
 - Reptiles: features and evolution
 - Dinosaurs/birds: features and evolution
 - Tetrapod evolution (**Chapter 34.5**)
 - Tetrapods: features, definition and evolution
 - Early evolution of tetrapods in fossil record
 - Amphibians: features and evolution
 - Gnathostome evolution (Chapter 34.4)
 - Gnathostomes: features, definition and evolution
 - Early evolution of gnathostomes in fossil record
 - Chondrichthyans: features and evolution
 - Actinopterygians: features and evolution
 - Sarcopterygians: features and evolution
 - Vertebrate evolution (Chapter 34.2 34.3)

- Origin of vertebrates: craniates
- Vertebrates: features, definition and evolution
- Early craniates and vertebrates in fossil record
- Hagfishes: features
- Lampreys: features
- Chordate evolution (Chapter 34.1)
- Chordates: features, definition and evolution
- Cephalochordates
- Urochordates
- Deuterostome evolution (**Chapter 33.5**)
 - Echinoderms: features and evolution
- Bilaterian evolution (Chapter 33.3 33.4)
 - Bilaterian origins
 - Ecdysozoa
 - \diamond Nematodes: features and evolution
 - \diamond Arthropods: origins, features and evolution
 - General characters
 - Chelicerates
 - Myriapods
 - ♦ Insects
 - Crustaceans
 - Lophotrochozoa
 - ♦ Flatworms: features and evolution
 - Free-living flatworms
 - Parasitic flatworms
 - ♦ Rotifers: features and asexual reproduction
 - ♦ Lophophorates: features and evolution
 - ♦ Molluses: features and evolution
 - ♦ Chitons
 - ♦ Gastropods
 - Bivalves
 - ♦ Cephalopods
 - ♦ Annelids: features and evolution
 - Polychaetes
 - Oligochaetes
 - Leeches
- Eumetazoan evolution (**Chapter 33.2**)
 - Features of Eumetazoa

- Cnidarians: features and evolution
 - ♦ Hydrozoans
 - ♦ Scyphozoans
 - ♦ Cubozoans
 - \diamond Anthozoans
- Origin of animals (Chapter 33.1)
- Cambrian explosion and early evolution of animal phyla
- Sponge: features
- Choanoflagellates: the closest relative of our kingdom

VI. Plant Form and Function

Chapter 35. Plant Structure, Growth, and Development

- ≻ Are Plants Computers?
 - Plants have a hierarchical organization consisting of organs, tissues, and cells
 - Three Basic Plant Organs: Roots, Stems, and Leaves
 - Dermal, Vascular, and Ground Tissues
 - Common Types of Plant Cells
 - Meristems generate cells for primary and secondary growth
 - Primary growth lengthens roots and shoots
 - Primary Growth of Roots
 - Primary Growth of Shoots
 - Secondary growth increases the diameter of stems and roots in woody plants
 - The Vascular Cambium and Secondary Vascular Tissue
 - The Cork Cambium and the Production of Periderm
 - Evolution of Secondary Growth
 - Growth, morphogenesis, and cell differentiation produce the plant body
 - Model Organisms: Revolutionizing the Study of Plants
 - Growth: Cell Division and Cell
 - Expansion
 - Morphogenesis and Pattern Formation
 - Gene Expression and Control of Cell
 - Differentiation
 - Shifts in Development: Phase Changes
 - Genetic Control of Flowering

Chapter 36. Resource Acquisition and Tranport in Vascular Plants

- Different mechanisms transport substances
 - Symplast and apoplast
 - Short-distance transport
 - Water potential
 - Aquaporin
 - Bulk flow in long-distance transport
- > Transport of water and minerals in the xylem
 - Endodermis
 - Casparian strip
 - Bulk flow transport via the xylem
 - Root pressure
 - Transpiration pull
 - Adhesion and cohesion in the ascent of xylem sap
- Transpiration rate regulated by stomata
 - Mechanism of stomata close and opening
 - Potassium ions
 - Abscisic acid
 - Xerophyte and CAM
- ➤ Transport of sugars in the phloem
 - Movement from source to sink
 - Phloem sap
 - Pressure flow

Chapter 37. Soil and Plant Nutrition

- ➢ Soil contains a living, complex ecosystem
 - Soil texture
 - Topsoil composition
 - Soil conservation and sustainable agriculture
- > Plants require essential elements to complete their life cycle
 - Macronutrients and Micronutrients
 - Definition of essential elements
 - Methods for identification of essential elements
 - Symptoms of mineral deficiency
 - Improving plant nutrition by genetic modification
- > Plant nutrition often involves relationships with other organisms
 - Soil bacteria and plant nutrition
 - Fungi and plant nutrition

Epiphytes, parasitic plants, and carnivorous plants

Chapter 38. Angiosperm Reproduction and Biotechnology

- Overview: Flowers of Deceit
- Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle
 - Flower Structure and Function
 - Development of Male Gametophytes in Pollen Grains
 - Development of Female Gametophytes (Embryo Sacs)
 - Pollination
 - Coevolution of Flower and Pollinator
 - Double Fertilization
 - Seed Development, Form, and Function
 - Endosperm Development
 - Embryo Development
 - Structure of the Mature Seed
 - Seed Dormancy: An Adaptation for Tough Times
 - Seed Germination and Seedling Development
 - Fruit Form and Function
- Flowering plants reproduce sexually, asexually, or both Mechanisms of Asexual Reproduction
 - Advantages and Disadvantages of Asexual Versus Sexual Reproduction
 - Mechanisms That Prevent Self-Fertilization
 - Vegetative Propagation and Agriculture
 - Clones from Cuttings
 - Grafting
 - Test-Tube Cloning and Related Techniques
- > Humans modify crops by breeding and genetic engineering
 - Plant Breeding
 - Plant Biotechnology and Genetic Engineering
 - Reducing World Hunger and Malnutrition
 - Reducing Fossil Fuel Dependency
 - The Debate over Plant Biotechnology
 - Issues of Human Health
 - Possible Effects on Nontarget Organisms
 - Addressing the Problem of Transgene Escape

Chatper 39. Plant Responses to Internal and External Signals

- > Overview: Stimuli and a Stationary Life
- > Signal transduction pathways: From signal reception to response
 - Reception
 - Transduction
 - Response and regulation
- Function of plant hormones
 - The discovery of plant hormones
 - A survey of plant hormones
 - Auxin
 - Cytokinins
 - Gibberellins
 - Brassinosteroids
 - Abscisic acid
 - Strigolactones
 - Ethylene
 - Hormone interactions
- Plant light responses
 - Blue-light receptors
 - Phytochromes
 - Circadian rhythms
 - Photoperiodism
- Plant responses to other stimuli
 - Gravity
 - Mechanical stimuli
 - Abiotic stresses
- Plant defenses against herbivores and pathogens
 - Defenses against herbivores
 - Defenses against pathogens

VII. Animal Form and Function

Chatper 40. Basic Principles of Animal Form and Function

- Organization of the animal body
 - Introduction to Animal organization and function
 - Hierarchical organization of the animal body
 - Animal tissues
 - Animal organs and organ systems

- Feedback control mechanism and Homeostasis
- Homeostatic control of body temperature

Chapter 41. Animal Nutrition

- ➤ The purpose of the digestive system
- Dietary categories of animal
 - Herbivores
 - Carnivores
 - Omnivores
- Nutritional Requirements
 - energy for cellular processes, building blocks for macromolecules and essential nutrients
 - Essential Nutrients
 - malnutrition
- The main stages of food processing
 - Ingestion
 - intracellular digestion
 - extracellular digestion
 - gastrovascular cavities
 - alimentary canals
 - Digestion
 - Absorption
 - elimination
- Organs of the mammalian digestive system
 - the muscles of the alimentary canals
 - sphincters and peristalsis
 - The Oral Cavity, Pharynx, and Esophagus
 - teeth
 - salivary gland
 - swallowing reflex
 - Digestion in the Stomach
 - Structure and function of the stomach
 - Gastric juice
 - What prevents gastric juice from digesting away the stomach lining?
 - regulation of the secretion of the gastric juice
 - GERD (gastroesophageal reflux disease) and Gastric ulcers
 - Digestion in the Small Intestine
 - Pancreatic Secretions

- Secretions of the Small Intestine
- Bile Production by the Liver
- Absorption in the Small Intestine
 - absorption surface of the small intestine
 - capillaries and hepatic portal vein
 - Na⁺-glucose co-transporter
 - the absorption and transport of the lipids
 - Lipoprotein
- Absorption in the Large Intestine
 - aquaporin
- ➤ The digestive systems of vertebrate
 - Adaptations of the digestive systems
 - the digestion and absorption of cellulose
- Feedback circuits regulate digestion
 - Hormonal Regulation of Digestion
 - Glucose Homeostasis
 - Regulation of Appetite and Consumption
 - ob gene, db gene and leptin

Chapter 42. Circulation and Gas Exchange

- Homeostasis of internal environment
 - Transport of materials: The circulatory system
 - Internal transport of materials
 - Gastrovascular cavity
 - Open and closed circulatory systems
 - Vertebrate circulatory systems
 - \diamond Single circulation
 - \diamond Double circulation
 - The mammalian heart
 - Cardiac structure
 - Pacemaker and conducting system of the heart
 - Electrocardiogram
 - Cardiac cycle
 - The structure and function of blood vessels
 - Arteries, veins and capillaries
 - Pressure, blood flow and resistance
 - Blood velocity
 - Site for exchange of materials : capillaries

- \diamond The distribution of fluid across the walls of capillaries
- ♦ Fluid return via lymphatic vessels
- Regulation of blood pressure
 - Measurement of arterial blood pressure
 - Autonomic nervous system and hormones
 - ♦ Arterial baroreceptor reflex
- Blood composition and function
 - Plasma and blood cells
 - Blood clotting
- Cardiovascular diseases
 - Atherosclerosis
 - Stroke and heart attack
 - Hypertension
- Gas exchange: The respiratory system
 - The process of gas exchange
 - Gas exchange surfaces in animals
 - Body surface in earthworms
 - Gills in fish
 - \diamond Counter-current gas exchange
 - Tracheae in insects
 - Lungs in land vertebrates
 - The diffusion of gas
 - Fick's law of diffusion
 - Dalton's la
 - Henry's la
 - The efficient lungs in birds
 - Avian lungs and air sacs
 - Air flows in one direction
 - cross-current gas exchange
 - Mammalian respiratory system
 - The structure and function of airways
 - Site of gas exchange: The alveoli
 - Breathing
 - Boyle's law
 - inhalation
 - exhalation
 - Spirometer and lung volumes and capacities
 - Control of breathing

- ♦ Breathing control centers in brainstem
- ♦ Central and peripheral chemoreceptors
- Gas exchange and transport
 - Gas exchange
 - \diamond Gas exchange in alveoli
 - \diamond Gas exchange in other tissues
 - Oxygen Transport
 - ♦ Hemoglobin-oxygen dissociation curve
 - ♦ Bohr effect
 - Carbon dioxide transport
- Respiration in special environments
 - High altitudes
 - \diamond Thin air at high altitude
 - \diamond Adaptation to high altitude
 - Ocean depths
 - \diamond The problem of high partial pressure of gas
 - ♦ Decompression sickness
 - ♦ Adaptation of diving mammals

Chapter 43. The Immune System

> Innate immunity: non-specific protection against pathogens

- External physical barriers: skin, pH, mucus,
- Phagocytes and natural killer cells
- Defensive proteins: interferons and complement system
- Inflammatory responses: disinfect, clean, and limited the spread of pathogens
- > The lymphatic system: to fight infections
- > Adaptive immunity: specific response to pathogens
 - Active and passive immunities
 - B and T cells for humoral and cell-mediated immune responses, respectively.
 - Antigens: molecules that induce adaptive immune responses
 - Clonal selection of B cells: primary and secondary responses
 - Antibody functions: neutralization, agglutination, precipitation, and complement system activation
 - Helper T cell: recognizes the antigen from the antigen-presenting cell then activates the cyotoxic T cell and B cell; different interleukins involved
 - Cytotoxic T cell: kill "infected" cells

- HIV positive and AIDS: when blood Th cells drop from 600 to 200 per microliter
- Immune malfunction
 - Autoimmune diseases: immune system attack the body's molecules
 - Weakened immune system: genetic or stress
 - Allergy: hypersensitive response to harmless environmental factors

Chapter 44. Osmoregulation and Excretion

- > The balances between uptake and loss of water and solutes
 - Osmosis and Osmolarity
 - Osmoconformer and osmoregulator
 - Euryhaline and stenohaline animals
 - Marine Animals
 - Chloride cells actively transport chloride ions out
 - Trimethylamine oxide (TMAO), salts and Urea
 - Freshwater Animals
 - Replenishing salts by uptake across the gills and by eating
 - The functions of the steroid hormone cortisol
 - Anhydrobiosis
 - Land Animals
 - Water gain derived from metabolism
 - Water gain ingested in food
 - Water gain ingested in liquid
 - Transport epithelia
- Animal's nitrogenous wastes
 - Ammonia
 - a small and very toxic molecule
 - can be tolerated at only very low concentrations
 - Urea
 - Urea's low toxicity reduces the amount of water needed for nitrogen excretion
 - uric acid
 - uric acid is relatively nontoxic, and insoluble in water
 - gout
- Diverse excretory systems
 - Excretory Processes
 - Filtration
 - Reabsorption

- secretion
- Excretory Systems
 - Protonephridia
 - Metanephridia
 - Malpighian tubules
 - Kidneys
- > The nephron is the functional unit of the kidney
 - The structure of the kidney
 - From Blood Filtrate to Urine
 - Filtration: the renal corpuscle
 - Reabsorption: the proximal tubule
 - Creating an osmotic gradient: the loop of Henle
 - Regulating water and electrolyte balance: the distal tubule and collecting duct
 - The mammalian kidney's ability to conserve water is a key terrestrial adaptation
 - Diverse adaptations of the vertebrate kidney
- ➢ Urine Formation Is under Hormonal Control
 - Antidiuretic Hormone
 - ADH triggers the insertion of aquaporins into the apical membrane
 - ADH increases permeability to urea, which increases the osmolarity of the surrounding fluid
 - diabetes insipidus
 - The Renin-Angiotensin-Aldosterone System
 - Homeostatic Regulation of the Kidney

Chapter 45. Hormones and the Endocrine System

- Chemical signals in animals
 - Chemical signals
 - Paracrines
 - Nitric oxide; NO
 - prostaglandins
 - Autocrines
 - Neurotransmission
 - Endocrine-hormones
 - Neurosecretory
 - Pheromones
 - Hormones

- Signal molecules and receptors
- Chemical hormone classes
 - Lipid soluble hormones: steroids, thyroxin
 - Water soluble hormones: proteins, peptides, amines
- Hormone actions and responses of target cells
- Lipid soluble hormones: intracellular hormone-receptor complex and regulation of gene expression
- Water soluble hormones: activation of surface receptor and intracellular second messengers
 - ♦ cAMP-dependent pathway
 - \diamond Ca²⁺-IP₃ signaling pathway
- Invertebrate endocrine system
 - Hormone regulation of molting in Crustacea
 - Ecdysone
 - Molting-inhibiting hormone
 - Hormone regulation of metamorphosis in insects
 - prothoracicotropic hormone
 - Ecdysone
 - Juvenile hormone
- Vertebrate endocrine system
 - Hypothalamus-anterior pituitary gland
 - Thyroid-stimulating hormone; TSH
 - Adrenocorticotropic hormone; ACTH
 - Follicle-stimulating hormone; FSH
 - Luteinizing hormone; LH
 - Prolactin
 - Growth hormone
 - Thyroid gland and thyroid hormone
 - Thyroid gland
 - Thyroid hormone
 - Negative feedback regulation of thyroid hormone secretion
 - Adrenal gland and stress
 - Adrenal cortex
 - ♦ glucocorticoids
 - Adrenal medulla
 - ♦ Epinephrine
 - Posterior pituitary gland
 - Antidiuretic hormone; ADH

- Oxytocin
- Others
 - Parathyroid hormone and calcium homeostasis
 - insulin, glucagon and glucose homeostasis

Chapter 46. Animal Reproduction

- ➢ Overview
 - Pairing Up for Sexual Reproduction
- ➢ Modes of Reproduction
 - Asexual Reproduction
 - Sexual Reproduction
 - In vitro and in vivo fertilization
 - Reproductive system
 - Reproductive Cycle
 - Production and transport of gametes
- Mammalian Reproduction
 - Mammalian sex hormonal regulation
 - Female sex hormonal regulation
 - Male sex hormonal regulation
 - Human Sexual Response
 - Reproduction of placental mammals
 - Conception, Embryonic Development, and Birth
 - Maternal immune tolerance of the embryo and fetus
- Modern Reproductive Technologies

Chapter 47. Animal Development

- ➤ Overview
 - A Body-Building Plan
- Initiation of development
 - Fertilization
 - Cleavage
- ➤ Morphogenesis
 - Gastrulation
 - Developmental Adaptations of Amniotes
 - Organogenesis
 - Mechanisms of morphogenesis

Chapter 48. Neurons and Synapses and Signaling

- Neuron organization and structure
 - Introduction to Information Processing
 - Neuron Structure and Function
- > Ion pumps and ion channels establish the resting potential of a neuron
 - Formation of the Resting Potential
 - Sodium-potassium pump
 - Leaky potassium channel
 - Modeling the Resting Potential
 - Polarization
 - Concentration gradient
 - Electric gradient
 - Nernst equilibrium potential
- > Action potentials are the signals conducted by axons
 - Hyperpolarization and Depolarization
 - Graded Potentials and Action Potentials
 - Generation of Action Potentials
 - Threshold
 - All-or-none
 - Conduction of Action Potentials
 - Myelin sheath
 - Saltatory conduction
- > Neurons communicate with other cells at synapses
 - Generation of Postsynaptic Potentials
 - Ligand-gated ion channel
 - EPSP
 - IPSP
 - Summation of Postsynaptic Potentials
 - Spatial summation
 - Temporal summation
 - Modulated Signaling at Synapses
 - Presynaptic
 - Postsynaptic
 - Neurotransmitters
 - Excitatory
 - Inhibitory

Chapter 49. Nervous systems

> Nervous systems consist of circuits of neurons and supporting cells

- Organization of the Vertebrate Nervous System
- Glia
- The Peripheral Nervous System
- > The vertebrate brain is regionally specialized
 - Arousal and Sleep
 - Biological Clock Regulation
 - Emotions
- > The cerebral cortex controls voluntary movement and cognitive functions
 - Language and Speech
 - Lateralization of Cortical Function
 - Information Processing
 - Frontal Lobe Function
 - Evolution of Cognition in Vertebrates
- > Changes in synaptic connections underlie memory and learning
 - Neural Plasticity
 - Memory and Learning
 - Long-Term Potentiation
 - Stem Cells in the Brain
- > Many nervous system disorders can be explained in molecular terms
 - Schizophrenia
 - Depression
 - Drug Addiction and the Brain's Reward System
 - Alzheimer's Disease
 - Parkinson's Disease

Chapter 50. Sensory and Motor Mechanisms

- Animal sensory system
 - Sensory receptors and sensory pathways
 - Sensory pathways
 - Transduction of sensory receptors
 - Transmission of sensory neuron
 - Sensation at specific brain area
 - Types of sensory receptors
 - Mechanoreceptors
 - Chemoreceptors
 - Thermoreceptors
 - Electromagnetic receptors
 - Nociceptors

- Cutaneous sensations
 - cutaneous sensory receptors
 - receptive field and sensory acuity
 - Somatosensory cortex
- Chemical sense
 - Taste
 - Smell
- Equilibrium and hearing
- Vision
 - Invertebrate visual system
 - Vertebrate visual system
 - Vertebrate complex eye
 - Retina structure
 - Photoreceters

➢ Animal Motor System

- Muscle composition
 - Muscle muscle fiber (cell) myofibril sarcomere
 - Filament sliding: consume ATP for thick filament (myosine) to slide against the thin filament (actin)
 - Motor neuron: induce muscle cell Ca2+ elevation to trigger muscle contraction
- Locomotion
 - Skeletons: hydrostatic skeleton, exoskeleton, and endoskeleton
 - Vertebrate skeleton: our body
 - Different types of locomotions: like swimming, hopping, running
 - Bone and joints
 - Skeleton and muscle: linked with each other for movement

Chapter 51. Animal Behavior

- Sensory Inputs and Behaviors
 - Fixed Action Patterns
 - Migration and Behavioral Rhythms
 - Animal Signals and Communication
 - Forms of Animal Communication
 - Pheromones
- Learning and Behaviors
 - Experience and Behavior
 - Learning

- Imprinting
- Spatial Learning and Cognitive Maps
- Associative Learning
- Cognition and Problem Solving
- ➢ Food and Sex
 - Foraging Behavior
 - Mating Behavior and Mate Choice
 - Mating Systems and Sexual Dimorphism
 - Mating Systems and Parental Care
 - Sexual Selection and Mate Choice
- Evolution of Behaviors
 - Genetic Basis of Behavior
 - Genetic Variation and the Evolution of Behavior
 - Altruism
 - Inclusive Fitness
 - Hamilton's Rule and Kin Selection
 - Evolution and Human Culture

VIII. Ecology

Chapter 52. An Introduction to Ecology and the Biosphere

- ≻ The Scope of Ecological Research
 - Evolution and Ecology
 - Ecology and Biological Hierarchy
- ≻ Earth's Climate
 - Global Climate Patterns
 - Seasonality
 - Atmosphere circulation
 - Oceans circulation
 - El Nino
 - Regional and Local Effects
 - Bodies of Water
 - Mountains and Rain Shadows
 - Elevation
 - Microclimate
 - Global Climate Change
- Terrestrial Biomes
 - Climate and Terrestrial Biomes

- General Features of Terrestrial Biomes
- Disturbance and Terrestrial Biomes
- ➤ Aquatic Biomes
 - Light and Nutrients
 - Zonation in Aquatic Biomes
- Case Studies in Taiwan

Chapter 53. Population Ecology

- Distribution and Range
 - Population and Spatial Scale
 - Speciation and Dispersal Ability
 - Behavior and Habitat Selection
 - Abiotic Factors
 - Biotic Factors
 - Patterns of Dispersion
- Abundance and Sampling
 - Quadrat Methods
 - Mark-recapture Methods
 - Birth, Death, Immigration, and Emigration
- Demographics and Population Dynamics
 - Survival and Reproductive Rates
 - Age Structure and Life Table
- ≻ Life History
 - Life Table and Life History
 - Life History Diversity
 - Life History Trade-offs
- Exponential Model
 - Per Capita Rate of Increase
 - Exponential Growth
- ➤ Logistic Model
 - Carrying Capacity
 - Density-dependent Growth and Real Populations
 - Mechanisms of Density-Dependent Population Regulation
- ➢ Human Population
 - The Global Human Population
 - Global Carrying Capacity
 - Ecological Footprints
- Case Studies in Taiwan

Chapter 54. Community Ecology

- Causes of Species Richness
 - Ecosystem Productivity
 - Habitat Heterogeneity
- ➢ Community Interactions
 - Competition
 - Exploitation
 - Predation
 - Herbivory
 - Pathogens and Parasites
 - Mutualism and Facilitation
 - Symbiosis
 - Coevolution
- ➢ Niche Concept
 - Competitive Exclusion
 - Resource Partitioning
 - Character Displacement
- Species Diversity and Trophic Structure
 - Trophic Structure
 - Keystone Species and Ecosystem Engineer
 - Bottom-Up and Top-Down Controls
 - Diversity and Community Stability
- Effects of Biogeographic factors
 - Latitudinal Gradients
 - Area Effects
 - Island Equilibrium Model
- ➢ Ecological Succession
 - Effects of Disturbance
 - Human Disturbance
- ➤ Case Studies in Taiwan

Chapter 55. Ecosystems and Restoration Ecology

- Physical Laws Govern
 - Conservation of Energy
 - Conservation of Mass
 - Energy, Mass, and Trophic Levels
- Primary Productivity

- Ecosystem Energy Budgets
- Primary Production in Aquatic Ecosystems
- Primary Production in Terrestrial Ecosystems
- Energy Transfer Efficiency
 - Production Efficiency
 - Ecological Pyramids
- Nutrients and Water Cycles
 - Biogeochemical Cycles
 - Decomposition and Nutrient Cycling Rates
 - Experimental Forest
- Human Activity and Ecosystem Stress
 - Pollution
 - Acid Precipitation
 - Ozone Hole
 - Habitat Destruction
- Restoration Ecology
 - Bioremediation
 - Biological Augmentation
 - Restoration Projects Worldwide
- ➢ Case Studies in Taiwan

Chapter 56. Conservation Biology and Global Change

- ► Earth's biodiversity
 - Three Levels of Biodiversity
 - Biodiversity Hot spots and Endemism
 - Extinction and Biodiversity Crisis
 - Small Populations
 - Loss of Genetic Variability
 - Catastrophic Disturbances
 - Demographic Factors
 - Captive Breeding
 - Biodiversity and Human Welfare
- Population conservation
 - Small-Population Approach
 - Declining-Population Approach
 - Weighing Conflicting Demands
- Landscape and regional conservation
 - Landscape Structure and Biodiversity

- Establishing Protected Areas
- Megareserves
- ➢ Factors responsible for Extinction
 - Habitat destruction
 - Degradation
 - Nutrient Enrichment
 - Toxins in the Environment
 - Greenhouse Gases and Global Warming
 - Habitat Loss and Fragmentation
 - Habitat Area and Edge
 - Disturbance and Stress
 - Isolation and Distance
 - Overexploitation
 - Introduced species
 - Pollution and Biological Magnification
 - Disruption of ecological interactions
- Sustainable development
 - Sustainable Biosphere Initiative
 - The Future of the Biosphere
- Case Studies in Taiwan

Textbooks used for the General Biology courses in NTU

- Campbell Biology, Jane B. Reece, et al., 2013. 10th ed., Pearson/ Benjamin Cummings.
- Biological Science, Scott Freeman, 2013, 5th ed., Pearson/ Benjamin Cummings.
- Biology, Peter. H. Raven, et al., 2013, 10th ed., The McGraw-Hill Higher Education.
- Biology: the dynamic science, Peter J., Russell, et al., 2014, 3rd ed., Cengage Learning.
- Biology: the unity and diversity of life, Cecie Starr, et al., 2013, 13th ed., Cengage Learning.
- Campbell Biology in Focus, Lisa A. Urry, et al., AP 1st ed., 2014, Pearson/ Benjamin Cummings.
- Biology, Robert Brooker, et al., 2014, 3rd ed., The McGraw-Hill Higher Education.
- ▶ Biology, Eldra Solomon, et al., 2014, 10th ed., Cengage Learning.